← Back to all models

DeepSeek: DeepSeek V3.1

deepseek-chat-v3.1

DeepSeek-V3.1 is a large hybrid reasoning model (671B parameters, 37B active) that supports both thinking and non-thinking modes via prompt templates. It extends the DeepSeek-V3 base with a two-phase long-context training process, reaching up to 128K tokens, and uses FP8 microscaling for efficient inference. Users can control the reasoning behaviour with the `reasoning` `enabled` boolean. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#enable-reasoning-with-default-config) The model improves tool use, code generation, and reasoning efficiency, achieving performance comparable to DeepSeek-R1 on difficult benchmarks while responding more quickly. It supports structured tool calling, code agents, and search agents, making it suitable for research, coding, and agentic workflows. It succeeds the [DeepSeek V3-0324](/deepseek/deepseek-chat-v3-0324) model and performs well on a variety of tasks. Context: 32768

Available at 1 Provider

Provider Source Input Price ($/1M) Output Price ($/1M) Description Free
openrouter openrouter Input: $0.15 Output: $0.75 DeepSeek-V3.1 is a large hybrid reasoning model (671B parameters, 37B active) that supports both thinking and non-thinking modes via prompt templates. It extends the DeepSeek-V3 base with a two-phase long-context training process, reaching up to 128K tokens, and uses FP8 microscaling for efficient inference. Users can control the reasoning behaviour with the `reasoning` `enabled` boolean. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#enable-reasoning-with-default-config) The model improves tool use, code generation, and reasoning efficiency, achieving performance comparable to DeepSeek-R1 on difficult benchmarks while responding more quickly. It supports structured tool calling, code agents, and search agents, making it suitable for research, coding, and agentic workflows. It succeeds the [DeepSeek V3-0324](/deepseek/deepseek-chat-v3-0324) model and performs well on a variety of tasks. Context: 32768